Phase changes in random m-ary search trees and generalized quicksort
نویسندگان
چکیده
We propose a uniform approach to describing the phase change of the limiting distribution of space measures in random m-ary search trees: the space requirement, when properly normalized, is asymptotically normally distributed for m ≤ 26 and does not have a fixed limit distribution for m > 26. The tools are based on the method of moments and asymptotic solutions of differential equations, and are applicable to secondary cost measures of quicksort with median-of-(2t+ 1) for which the same phase change occurs at t = 58. Both problems are essentially special cases of the generalized quicksort of Hennequin in which a sample of m(t+ 1)− 1 elements are used to select m− 1 equi-spaced ranks that are used in turn to partition the input into m subfiles. A complete description of the numbers at which the phase change occurs is given. For example, when m is fixed and t varies, the phase change occurs at (m, t) = {(2, 58), (3, 19), (4, 10), (5, 6), (6, 4), · · · }. We also indicate some applications of our approach to other problems including bucket recursive trees. A general framework on “asymptotic transfers” of the underlying recurrence is also given.
منابع مشابه
Second phase changes in random m-ary search trees and generalized quicksort: convergence rates
We study the convergence rate to normal limit law for the space requirement of random m-ary search trees. While it is known that the random variable is asymptotically normally distributed for 3 ≤ m ≤ 26 and that the limit law does not exist for m > 26, we show that the convergence rate is O(n) for 3 ≤ m ≤ 19 and is O(n), where 4/3 < α < 3/2 is a parameter depending on m for 20 ≤ m ≤ 26. Our app...
متن کاملP´olya Urn Models and Connections to Random Trees: A Review
This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...
متن کاملBranches in random recursive k-ary trees
In this paper, using generalized {polya} urn models we find the expected value of the size of a branch in recursive $k$-ary trees. We also find the expectation of the number of nodes of a given outdegree in a branch of such trees.
متن کاملOn the Height of Random m-ary Search Trees
A random m-ary leach tree is constructed from a random permutation of 1, . . . , n. A la of large numbers is obtained for the height Hn of these trees by applying the theory of branching random alks . In particular, it is sho n that Ha/log n y in probability as n ---~ oo, here y = y(m) is a constant depending upon m only. Interestingly, as m ---~ 00 , y(m) is asymptotic to 1/log m, the coeffici...
متن کاملMultivariate Normal Limit Laws for the Numbers of Fringe Subtrees in m-ary Search Trees and Preferential Attachment Trees
We study fringe subtrees of random m-ary search trees and of preferential attachment trees, by putting them in the context of generalised Pólya urns. In particular we show that for the random m-ary search trees with m ≤ 26 and for the linear preferential attachment trees, the number of fringe subtrees that are isomorphic to an arbitrary fixed tree T converges to a normal distribution; more gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 19 شماره
صفحات -
تاریخ انتشار 2001